B Physics from the Lattice

Paul Mackenzie Fermilab Run II B Physics Workshop September, 1999

Source material: Review of "B Decays on the Lattice" at Lattice '99 Shoji Hashimoto, hep-lat 9909136

See also T. Draper review at Lattice '98, hep-lat 9810065 T. Onogi review at Lattice '97, hep-lat 9802027

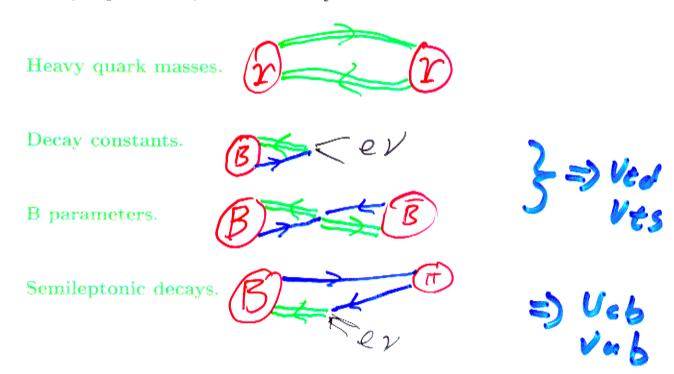
Plan of Talk

General questions:

- How much can you trust them; how good/how necessary is the quenched approximation?
- How do you interpret error analyses in lattice results?
- Which quantities are:
 - easy to do and done decently now?
 - doable with current methods and more work?
 - in need of new methods?

Specific topics (focusing on quantities maximizing ease of calculation, ease of experiment, physics impact):

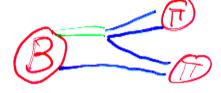
- · IB. IB.
- \bullet m_b
- \bullet B_B , B_{B_8}
- $B \rightarrow Dl\nu$
- $B \to \pi l \nu$


Which quantities are easiest/most believable on the lattice?

Most important dividing line: one hadron present at a time.

Naive treatment of $t \rightarrow it_E$ gets final state interactions wrong for multihadron states.

Moreover, mesons easier than baryons; Lightest hadrons with given quarks have best statistics. B easiers than B^{**} .


"Easy" quantities, done decently now.

MASS OF BOBY BS BC MAYBE 16 ...

"Hard" quantities, need better methods.

Nonleptonic decays.

"Medium" quantities, need more work

Other bag parameters.

HQET expectation values.

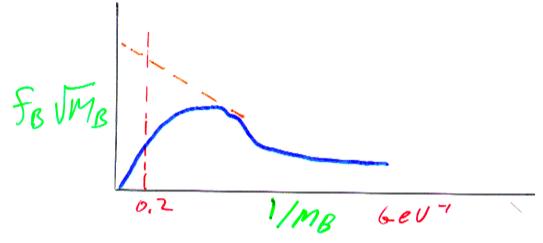
How fast will unquenched errors approach those of the best current quenched errors?

(Quenched approximation: leave out light quark loops, the effects of sea quarks. Speeds up calculations by orders of magnitude.) Reasonable guesses:

- No unforeseen problems, and no new ideas: 5 years?
- Unquenching harder than it looks now: 5-10 years?
- New ideas, better methods: ?

How believable is any quenched result?

The quenched approximation is the leading term in a loop expansion, BUT higher order corrections are as hard to calculate as the full unquenched theory.


Compare:

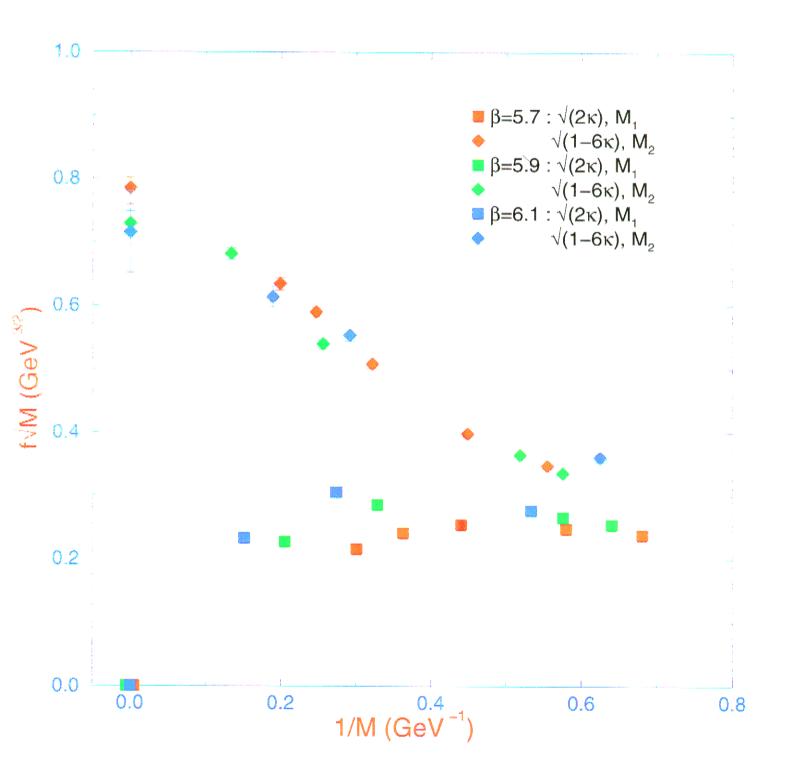
- Quark models. Not first step in any systematic expansion.
- Sum rules. Formally correct expansion, but no small parameter.
- Quenched approximation. Expansion exists, but second order corrections as hard the complete theory.
- Unquenched lattice calculations. The complete theory.

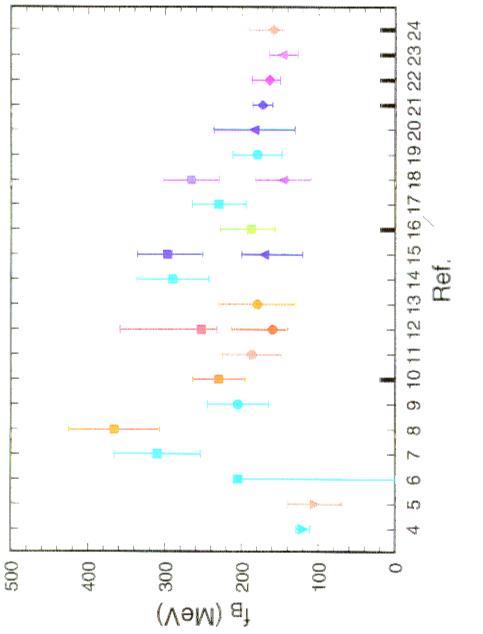
Putting the b quark on the lattice.

Standard light quark actions give singular results at large m.

Before NRQCD and HQET:

extrapolate light quark results to ∞ m


Better way:


Discretize nonrelativistic action:

$$\mathcal{L} = \psi^{\dagger} \left(iD_t + \frac{D^2}{2m} + \frac{\sigma \cdot B}{2m} + \ldots \right) \tag{1}$$

Main methods:

- NRQCD (Lepage)
- Static approximation (Eichten and Hill)
- "Relativistic" heavy fermions (El-Khadra, Kronfeld, Mackenzie)

extrapolation from $m_Q \le m_{ch}$ to m_b

static: m_Q → ∞ interpolation between m_{ch} and ∞ NRQCD KKM

LATTICE MONTE CARLO

CARTOON VERSON!

O. Axn > Uxx = EXP[Satar Sde. A] f: Fri >1-Tr U. U.U. + Ola2) (D+M) 4 > M4 + = [Yx+Ra-4z-Ra]8m+... 7 > SLAYSTAYSTAUJE XX SQ) CLARGE BUT FINITE DIM.

I. PATH INTEGRAL: MONTE CARLO METROPOLIS METHOD OUERRELAXED BIG, FINITE SET OF CONFIGURATIONS

I QUARK PROPAGATORS: D+M - SPARCE MATRIX SPARSE MATRIX METHODS CONJUGATE GRADIENT MINIMUM RESIDUAL

II HADRON CORRELATION FUNCTIONS

PUT QUARK PROPS TOGETHER T8 7854

JU FIT TO EXPONENTIALS

((+)=AC-E+++'e-E'+

How do you interpret reported uncertainties?

Lattice uncertainties consist of several pieces:

- Statistics. Usually can be done reliably.
- Quenched approximation. Usually a guess, perhaps 10%. Checked to some extent by using several quantities to set the physical scale. However, $\Delta_{\text{QUENCHING}}(\alpha_s) \sim 25\%$, $\Delta_{\text{QUENCHING}}(m_b) \sim 0\%$.
- Other systematic uncertainties.
 - Perturbation theory. Can be estimated objectively, e.g., $\mathcal{O}\alpha^2$.
 - Finite lattice spacing. Do you get the same answer at different lattice spacings?
 - Excited state contamination.
 - Chiral extrapolation.
 - Finite volume.

f_B unquenched.

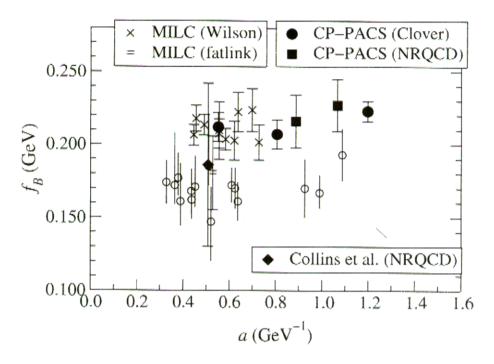


Figure 1: Dynamical lattice calculations of f_B . Results are from MILC, Collins *et al.*, and CP-PACS. Quenched results are also plotted with small open symbols.

Hashimoto, Lattice '99:

$$N_F$$
=2 N_F =0
 $f_B \ ({
m MeV}) \ 210 \pm 30 \ 170 \pm 20$
 $f_{B_s} \ ({
m MeV}) \ 245 \pm 30 \ 195 \pm 20$
 $f_{B_s}/f_B \ 1.16 \pm 4 \ 1.15 \pm 4$

b quark mass.

Earlier work by NRQCD (*, quenched, +, n_f =2) and APE with HQET (squares).

New two-loop calculation by Martinelli and Sachrajda agrees.

Hashimoto, Lattice '99: $\overline{m_b}(\overline{m_b}) = 4.26 \pm 0.11 \text{ GeV}.$

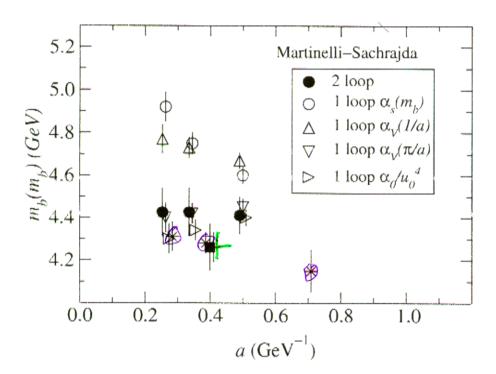


Figure 2: Lattice calculation of the b quark mass. Martinelli-Sachrajda's two-ioop results (filled circles) are plotted together with the corresponding one-loop matching results with various definitions of coupling constant (open symbols). APE's HQET result with $N_F = 2$ (square), and NRQCD result with $N_F = 0$ (star) and with $N_F = 2$ (plus) are also shown. From Hashimoto.

B_B .

Not yet as close agreement between different methods as for quenched f_B .

 $B_B(m_b) = 0.80(0.15)$

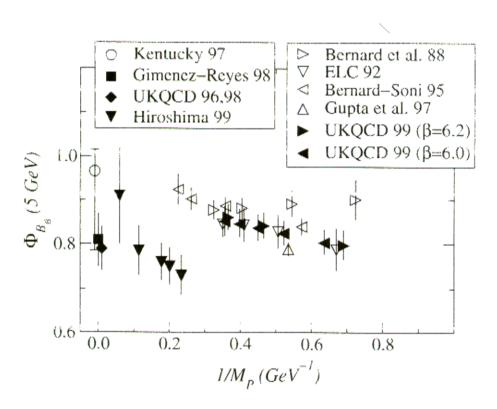


Figure 3: 1/M dependence of $\Phi_{B_B}(5GeV)$. The static and NRQCD data are from Kentucky, Giménez-Reyes, UKQCD, and Hiroshima. The relativistic calculations are Bernard et al., ELC. Bernard-Soni, Gupta et al., and UKQCD. Open symbols are obtained with Wilson quark for heavy and/or light quarks, and filled ones are O(a)-improved. Most points have statistical errors only.

Semileptonic decays.

- More amplitudes, many momenta.
- Errors more qualitative, worse statistics, finite lattice spacing errors.

Arbitrarily choose two topics where progress could be made.

$$B \rightarrow D^{(*)}l\nu$$

Shape of amplitude can be measured experimentally; need normalization at zero recoil to get V_{cb} . Deviation from 1 known only from sum rules.

Need < 5% errors.

Ratios of amplitudes produce errors vanishing in the $M_B = M_D$ symmetry limit.

$$|h_{+}^{B\to D}(1)|^{2} = \frac{\langle D|V_{0}^{cb}|B\rangle\langle B|V_{0}^{be}|D\rangle}{\langle D|V_{0}^{ce}|D\rangle\langle B|V_{0}^{bb}|B\rangle},\tag{2}$$

Prototype calculation (Hashimoto et. al.):

$$\mathcal{F}(1) = 1.060 \pm 0.016 \pm 0.002 \pm 0.003^{+0.001}_{-0.010},\tag{3}$$

where errors are from statistics, heavy quark masses, higher-order matching for $h_{+}(1)$, and the omitted rotation for $h_{-}(1)$, but not quenching or finite lattice spacing.

$B \to \pi l \nu$, $\rho l \nu$

- Much work.
- Different quantities reported, harder to compare.
- Often extrapolates to q^2 regions ($q^2 = 0$) and sometimes $1/M_B$ regions not covered by calculations.

A better way: calculate the decay rate directly (not the form factors). Compare theory and experiment in a q^2 region where both are good.

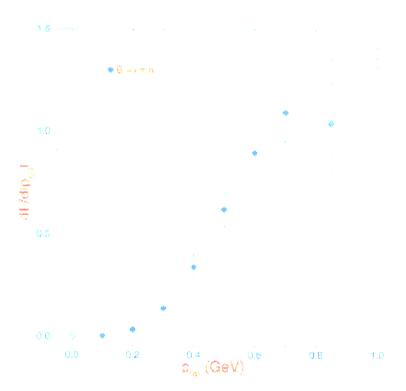


Figure 4. $B \to \pi t \nu$ differential decay rate at J = 5.7 S. Ryan, Lattice '99.

MY GOLD PLATED LIST FOR CKM 3rd ROW + COLUMN NEEDED (FOCUS + KTEU + LATTICE POR 15+ ZXZ) χ_s fes JBBS | Vcb | B>Dev 1 Vib 1 It's VEd Ved FB JBB Xa B (ang Ved) B>UKS KL > MOVI Im VES Vtd K+->TT+VY VEd Ved Vib Xs >Vts

Summary.

Some of the most important quantities in B phenomenology are also some of the easiest things for lattice QCD to calculate. These include:

- · fB+ fB.
- B_{B_s} , B_{B_s} , $\frac{/\frac{s}{R}B_{B_s}}{/\frac{s}{B_s}B_{B_s}}$, etc.
- · rrah
- $B \to \pi l \nu$, $\rho l \nu$
- $B \to Dl\nu$. $D^*l\nu$

Now: 10-20% accuracy.

Goal in 10 years: 2% accuracy?

Sooner if new ideas (coarse lattice methods?), later if roadblocks (chiral extrapolation harder at higher accuracy?)

Should add many new quantities to Buras's "gold-plated" list in time for his retirement.